The Deep Learning Revolution

The Deep Learning Revolution

Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in ...

Author: Terrence J. Sejnowski

Publisher: MIT Press

ISBN: 9780262346832

Category: Computers

Page: 352

View: 105

How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
Categories: Computers

Artificial Intuition

Artificial Intuition

This book is a spin-off from my previous book "The Deep Learning AI Playbook". The Playbook was meant for a professional audience. This is targeted to a much wider audience.

Author: Carlos Perez

Publisher: Createspace Independent Publishing Platform

ISBN: 1983895644

Category:

Page: 394

View: 638

I challenge you to find a field as interesting and exciting as Deep Learning. This book is a spin-off from my previous book "The Deep Learning AI Playbook." The Playbook was meant for a professional audience. This is targeted to a much wider audience. There are two kinds of audiences, those looking to explore and those looking to optimize. There are two ways to learn, learning by exploration and learning by exploitation. This book is about exploration into the emerging field of Deep Learning. It's more like a popular science book and less of a business book. It's not going to provide any practical advice of how to use or deploy Deep Learning. However, it's a book that will explore this new field in many more perspectives. So at the very least, you'll walk away with the ability to hold a very informative and impressive conversation about this unique subject. It's my hope that having less constraints on what I can express can lead to a more insightful and novel book. There are plenty of ideas that are either too general or too speculative to fit within a business oriented book. With a business book, you always want to manage expectations. Artificial Intelligence is one of those topics that you want to keep speaking in a conservative manner. That's one reason I felt the need for this book. Perhaps the freedom to be more liberal can give readers more ideas as where this field is heading. Also, it's not just business that needs to understand Deep Learning. We are all going to be profoundly impacted by this new kind of Artificial Intelligence and it is critical we all develop at least a good intuition of how it will change the world.The images in the front cover are all generated using Deep Learning technology.
Categories:

Java Deep Learning Essentials

Java Deep Learning Essentials

Style and approach This is a step-by-step, practical tutorial that discusses key concepts. This book offers a hands-on approach to key algorithms to help you develop a greater understanding of deep learning.

Author: Yusuke Sugomori

Publisher: Packt Publishing Ltd

ISBN: 9781785283147

Category: Computers

Page: 254

View: 138

Dive into the future of data science and learn how to build the sophisticated algorithms that are fundamental to deep learning and AI with Java About This Book Go beyond the theory and put Deep Learning into practice with Java Find out how to build a range of Deep Learning algorithms using a range of leading frameworks including DL4J, Theano and Caffe Whether you're a data scientist or Java developer, dive in and find out how to tackle Deep Learning Who This Book Is For This book is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It would also be good for machine learning users who intend to leverage deep learning in their projects, working within a big data environment. What You Will Learn Get a practical deep dive into machine learning and deep learning algorithms Implement machine learning algorithms related to deep learning Explore neural networks using some of the most popular Deep Learning frameworks Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms Discover more deep learning algorithms with Dropout and Convolutional Neural Networks Gain an insight into the deep learning library DL4J and its practical uses Get to know device strategies to use deep learning algorithms and libraries in the real world Explore deep learning further with Theano and Caffe In Detail AI and Deep Learning are transforming the way we understand software, making computers more intelligent than we could even imagine just a decade ago. Deep Learning algorithms are being used across a broad range of industries – as the fundamental driver of AI, being able to tackle Deep Learning is going to a vital and valuable skill not only within the tech world but also for the wider global economy that depends upon knowledge and insight for growth and success. It's something that's moving beyond the realm of data science – if you're a Java developer, this book gives you a great opportunity to expand your skillset. Starting with an introduction to basic machine learning algorithms, to give you a solid foundation, Deep Learning with Java takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. Once you've got to grips with the fundamental mathematical principles, you'll start exploring neural networks and identify how to tackle challenges in large networks using advanced algorithms. You will learn how to use the DL4J library and apply Deep Learning to a range of real-world use cases. Featuring further guidance and insights to help you solve challenging problems in image processing, speech recognition, language modeling, this book will make you rethink what you can do with Java, showing you how to use it for truly cutting-edge predictive insights. As a bonus, you'll also be able to get to grips with Theano and Caffe, two of the most important tools in Deep Learning today. By the end of the book, you'll be ready to tackle Deep Learning with Java. Wherever you've come from – whether you're a data scientist or Java developer – you will become a part of the Deep Learning revolution! Style and approach This is a step-by-step, practical tutorial that discusses key concepts. This book offers a hands-on approach to key algorithms to help you develop a greater understanding of deep learning. It is packed with implementations from scratch, with detailed explanation that make the concepts easy to understand and follow.
Categories: Computers

The New Learning Revolution 3rd Edition

The New Learning Revolution 3rd Edition

A new and updated edition of the hugely successful Learning Revolution. >

Author: Gordon Dryden

Publisher: A&C Black

ISBN: 185539183X

Category: Education

Page: 544

View: 878

A new and updated edition of the hugely successful Learning Revolution. >
Categories: Education

Deep Learning in Computer Vision

Deep Learning in Computer Vision

This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision ...

Author: Mahmoud Hassaballah

Publisher: CRC Press

ISBN: 9781351003810

Category: Computers

Page: 322

View: 446

Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.
Categories: Computers

Creating Makers How to Start a Learning Revolution at Your Library

Creating Makers  How to Start a Learning Revolution at Your Library

How to Start a Learning Revolution at Your Library Megan Egbert. where
students could use manipulatives to build a predetermined simple machine. My
idea was that once they experienced how to build the machine, they could hack it
and ...

Author: Megan Egbert

Publisher: ABC-CLIO

ISBN: 9781440843877

Category: Language Arts & Disciplines

Page: 107

View: 330

This book shows you how, even with a tight budget and limited space, you can foster "maker mentality" in your library and help patrons reap the learning benefits of making—with or without a makerspace. • Offers librarians creative ways to become involved in the exciting maker movement and encourage maker mentality among patrons • Presents an approach through which any library, no matter their size or budget, can participate • Speaks to all ages, experience levels, and educational levels • Fills a gap in the literature by providing libraries with limited resources the means to offer maker opportunities
Categories: Language Arts & Disciplines

Artificial Intelligence

Artificial Intelligence

This book attempts to help the reader on their AI journey by covering the concepts of AI, Machine Learning, and Deep Learning in its many forms; key ML and DL algorithms data scientists should learn; ethical challenges for the use of AI; ...

Author: Steven Astorino

Publisher: MC Press

ISBN: 1583478922

Category: Computers

Page: 120

View: 566

From humble evolutions in research papers and labs, artificial intelligence (AI)--which encompasses Machine Learning (ML) and Deep Learning (DL)--has matured in its many forms, infused in applications that can learn on their own and become progressively smarter with each interaction and transaction. Coupled with immense stores of data, maturity in CPU and GPU hardware, the invention of new, open source deep learning algorithms, and cloud technologies, operational AI has become available to the masses, setting the wheels in motion for a worldwide AI revolution that has never been seen before. This book attempts to help the reader on their AI journey by covering the concepts of AI, Machine Learning, and Deep Learning in its many forms; key ML and DL algorithms data scientists should learn; ethical challenges for the use of AI; how AI is being used across industries; possible future outlook for AI, and an AI Ladder to help accelerate the AI journey.
Categories: Computers

Machine Learning Paradigms

Machine Learning Paradigms

This research book is directed towards professors, researchers, scientists, engineers and students in computer science-related disciplines.

Author: George A. Tsihrintzis

Publisher: Springer Nature

ISBN: 9783030497248

Category: Computers

Page: 430

View: 928

At the dawn of the 4th Industrial Revolution, the field of Deep Learning (a sub-field of Artificial Intelligence and Machine Learning) is growing continuously and rapidly, developing both theoretically and towards applications in increasingly many and diverse other disciplines. The book at hand aims at exposing its reader to some of the most significant recent advances in deep learning-based technological applications and consists of an editorial note and an additional fifteen (15) chapters. All chapters in the book were invited from authors who work in the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into six parts, namely (1) Deep Learning in Sensing, (2) Deep Learning in Social Media and IOT, (3) Deep Learning in the Medical Field, (4) Deep Learning in Systems Control, (5) Deep Learning in Feature Vector Processing, and (6) Evaluation of Algorithm Performance. This research book is directed towards professors, researchers, scientists, engineers and students in computer science-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent deep learning-based technological applications. An extensive list of bibliographic references at the end of each chapter guides the readers to probe deeper into their application areas of interest.
Categories: Computers

Deep Learning with Python

Deep Learning with Python

A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days. Q: Does this book include everything I need to become a data science expert? A: Unfortunately, no.

Author: Mike Krebbs

Publisher: Createspace Independent Publishing Platform

ISBN: 1987407873

Category:

Page: 114

View: 828

***** Buy now (Will soon return to $47.99 + Special Offer Below) ***** Free Kindle eBook for customers who purchase the print book from Amazon Are you thinking of learning more about Deep Learning From Scratch by using Python and TensorFlow? The overall aim of this book is to give you an application of deep learning techniques with python. Deep Learning is a type of artificial intelligence and machine learning that has become extremely important in the past few years. Deep Learning allows us to teach machines how to complete complex tasks without explicitly programming them to do so. As a result people with the ability to teach machines using deep learning are in extremely high demand. It is also leading to them getting huge increases in salaries. Deep Learning is revolutionizing the world around us and hence the need to understand and learn it becomes significant. In this book we shall cover what is deep learning, how you can get started with deep learning and what deep learning can do for you. By the end of this book you should be able to know what is deep learning and the tools technology and trends driving the artificial intelligence revolution. Several Visual Illustrations and Examples Instead of tough math formulas, this book contains several graphs and images, which detail all-important deep learning concepts and their applications. This Is a Practical Guide Book This book will help you explore exactly the most important deep learning techniques by using python and real data. It is a step-by-step book. You will build our Deep Learning Models by using Python Target Users The book designed for a variety of target audiences. The most suitable users would include: Beginners who want to approach data science, but are too afraid of complex math to start Newbies in computer science techniques and machine learning Professionals in data science and social sciences Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on data science What's Inside This Great Book? Introduction Deep Learning Techniques Applications Next Steps Practical Sentiment Analysis using TensorFlow with Neural Networks Performing Sequence Classification with RNNs Implementing Sequence Classification Using RNNs in TensorFlow Glossary of Some Useful Terms in Deep Learning Sources & References Bonus Chapter: Anaconda Setup & Python Crash Course Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: f you want to smash Data Science from scratch, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Can I loan this book to friends? A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days. Q: Does this book include everything I need to become a data science expert? A: Unfortunately, no. This book is designed for readers taking their first steps in data science and further learning will be required beyond this book to master all aspects of data science. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. I will also be happy to help you if you send us an email at [email protected]
Categories:

Artificial Intelligence in the Age of Neural Networks and Brain Computing

Artificial Intelligence in the Age of Neural Networks and Brain Computing

... Learning and Neural Networks Before 2009e11.... 162 1.2 The Deep Learning
Cultural Revolution and New Opportunities........................................................... 162
1.3 Need and Opportunity for a Deep Learning Revolution in Neuroscience.

Author: Robert Kozma

Publisher: Academic Press

ISBN: 9780128162507

Category: Science

Page: 352

View: 583

Artificial Intelligence in the Age of Neural Networks and Brain Computing demonstrates that existing disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity and smart autonomous search engines. The book covers the major basic ideas of brain-like computing behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as future alternatives. The success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel and Amazon can be interpreted using this book. Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN) Authored by top experts, global field pioneers and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making Edited by high-level academics and researchers in intelligent systems and neural networks
Categories: Science

Deep Learning

Deep Learning

In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence ...

Author: John D. Kelleher

Publisher: MIT Press

ISBN: 9780262354905

Category: Computers

Page: 296

View: 536

An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.
Categories: Computers

Mastering OpenCV 4 with Python

Mastering OpenCV 4 with Python

However, it was not until 2012, when the deep learning revolution took place, that
some outstanding works having a significant impact on the research community
appeared. In connection with computer vision, the AlexNet architecture (the ...

Author: Alberto Fernández Villán

Publisher: Packt Publishing Ltd

ISBN: 9781789349757

Category: Computers

Page: 532

View: 779

Create advanced applications with Python and OpenCV, exploring the potential of facial recognition, machine learning, deep learning, web computing and augmented reality. Key Features Develop your computer vision skills by mastering algorithms in Open Source Computer Vision 4 (OpenCV 4)and Python Apply machine learning and deep learning techniques with TensorFlow, Keras, and PyTorch Discover the modern design patterns you should avoid when developing efficient computer vision applications Book Description OpenCV is considered to be one of the best open source computer vision and machine learning software libraries. It helps developers build complete projects in relation to image processing, motion detection, or image segmentation, among many others. OpenCV for Python enables you to run computer vision algorithms smoothly in real time, combining the best of the OpenCV C++ API and the Python language. In this book, you'll get started by setting up OpenCV and delving into the key concepts of computer vision. You'll then proceed to study more advanced concepts and discover the full potential of OpenCV. The book will also introduce you to the creation of advanced applications using Python and OpenCV, enabling you to develop applications that include facial recognition, target tracking, or augmented reality. Next, you'll learn machine learning techniques and concepts, understand how to apply them in real-world examples, and also explore their benefits, including real-time data production and faster data processing. You'll also discover how to translate the functionality provided by OpenCV into optimized application code projects using Python bindings. Toward the concluding chapters, you'll explore the application of artificial intelligence and deep learning techniques using the popular Python libraries TensorFlow, and Keras. By the end of this book, you'll be able to develop advanced computer vision applications to meet your customers' demands. What you will learn Handle files and images, and explore various image processing techniques Explore image transformations, including translation, resizing, and cropping Gain insights into building histograms Brush up on contour detection, filtering, and drawing Work with Augmented Reality to build marker-based and markerless applications Work with the main machine learning algorithms in OpenCV Explore the deep learning Python libraries and OpenCV deep learning capabilities Create computer vision and deep learning web applications Who this book is for This book is designed for computer vision developers, engineers, and researchers who want to develop modern computer vision applications. Basic experience of OpenCV and Python programming is a must.
Categories: Computers

Python Deep Learning from Basics

Python Deep Learning from Basics

Python Deep Learning from Basics: Fundamental Approach for Beginners- Neural Networks, Scikit-Learn, Deep Learning, TensorFlow, Data Analytics, Python, Data Science The deep learning revolution In this book, you will learn how to build ...

Author: Prof John Smith

Publisher: Independently Published

ISBN: 1790825962

Category:

Page: 84

View: 744

Python Deep Learning from Basics: Fundamental Approach for Beginners- Neural Networks, Scikit-Learn, Deep Learning, TensorFlow, Data Analytics, Python, Data Science The deep learning revolution In this book, you will learn how to build remarkable algorithms intelligent algorithms capable of solving very complex problems that just a decade ago was not even feasible to solveAnd let's just start with this notion of intelligence so at a very high level In this book, you'll actually learn how to build complex vision systems building a computer that how to seeIn addition, you will learn how to build an algorithm that will take as input x-ray images, and as output, it will detect if that person has a pneumothorax just from that single input image.You
Categories:

Data Science for Beginners

Data Science for Beginners

Your smartphone that suggests you the next word you want to type, your Netflix account that recommends you the series you may like or Spotify's personalised playlists. This is how machines are learning from you in everyday life.

Author: Russel R Russo

Publisher:

ISBN: 9798606059195

Category:

Page: 378

View: 386

Are you fascinated by Data Science but it seems too complicated? Do you want to learn everything about Artificial Intelligence but it looks like it is an exclusive club? If this is you, please keep reading: you are in the right place, looking at the right book. SInce you are reading these lines you have probably already noticed this: Artificial Intelligence is all around you. Your smartphone that suggests you the next word you want to type, your Netflix account that recommends you the series you may like or Spotify's personalised playlists. This is how machines are learning from you in everyday life. And these examples are only the surface of this technological revolution. Everyone knows (well, almost everyone) how important Data Science is for the growth and success of the biggest tech companies, and many people know about the Machine Learning impact in science, medicine and statistics. Also, it is quite commonly known that Artificial Intelligence, Machine Learning Deep Learning, and the mastering of their most important language, Python, can offer a lot of possibilities in work and business. And you yourself are probably thinking "I surely can see that opportunity, but how can I seize it?" Well, if you kept reading so far you are on the right track to answer your question. Either if you want to start your own AI entreprise, to empower your business or to work in the greatest and most innovative companies, Artificial Intelligence is the future, and Python and Neural Networks programming is The Skill you want to have. The good news is that there is no exclusive club, you can easily (if you commit, of course) learn how to find your way around Artificial Intelligence, Data Science, Deep Learning and Machine Learning, and to do that Data Science for Beginners is the best way. In Data Science for Beginners you will discover: The most effective starting points when training deep neural nets The smartest way to approach Machine Learning What libraries are and which one is the best for you Tips and tricks for a smooth and painless journey into artificial intelligence Why decision tree is the way The TensorFlow parts that are going to make your coding life easy Why python is the best language for Machine Learning How to bring your ideas into a computer How to talk with deep neural networks How to deal with variables and data The most common myths about Machine Learning debunked Even If you don't know anything about programming, understanding Data Science is the ideal place to start. Still, if you already know something about programming but not about how to apply it to Artificial Intelligence, Data Science is what you want to understand. Download now Data Science for Beginners to start your path of Artificial Intelligence.
Categories:

The Learning Revolution

The Learning Revolution

A Lifelong Learning Programme for the World's Finest Computer : Your Amazing
Brain Gordon Dryden, Jeannette Vos ... Thinking about it , and deep memory
storage Education is , of course , not only about absorbing new information .

Author: Gordon Dryden

Publisher:

ISBN: 1880396343

Category: Cognitive styles

Page: 524

View: 618

"A detailed report on how to achieve the learning revolution that is urgently required to match the revolution in formation and technology. A working guide for everyone, with special interest to teachers at all grade and college levels."--Page 10.
Categories: Cognitive styles

Mobile Artificial Intelligence Projects

Mobile Artificial Intelligence Projects

What you will learn Explore the concepts and fundamentals of AI, deep learning, and neural networks Implement use cases for machine vision and natural language processing Build an ML model to predict car damage using TensorFlow Deploy ...

Author: Karthikeyan NG

Publisher: Packt Publishing Ltd

ISBN: 9781789347043

Category: Computers

Page: 312

View: 119

Learn to build end-to-end AI apps from scratch for Android and iOS using TensorFlow Lite, CoreML, and PyTorch Key Features Build practical, real-world AI projects on Android and iOS Implement tasks such as recognizing handwritten digits, sentiment analysis, and more Explore the core functions of machine learning, deep learning, and mobile vision Book Description We’re witnessing a revolution in Artificial Intelligence, thanks to breakthroughs in deep learning. Mobile Artificial Intelligence Projects empowers you to take part in this revolution by applying Artificial Intelligence (AI) techniques to design applications for natural language processing (NLP), robotics, and computer vision. This book teaches you to harness the power of AI in mobile applications along with learning the core functions of NLP, neural networks, deep learning, and mobile vision. It features a range of projects, covering tasks such as real-estate price prediction, recognizing hand-written digits, predicting car damage, and sentiment analysis. You will learn to utilize NLP and machine learning algorithms to make applications more predictive, proactive, and capable of making autonomous decisions with less human input. In the concluding chapters, you will work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch across Android and iOS platforms. By the end of this book, you will have developed exciting and more intuitive mobile applications that deliver a customized and more personalized experience to users. What you will learn Explore the concepts and fundamentals of AI, deep learning, and neural networks Implement use cases for machine vision and natural language processing Build an ML model to predict car damage using TensorFlow Deploy TensorFlow on mobile to convert speech to text Implement GAN to recognize hand-written digits Develop end-to-end mobile applications that use AI principles Work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch Who this book is for Mobile Artificial Intelligence Projects is for machine learning professionals, deep learning engineers, AI engineers, and software engineers who want to integrate AI technology into mobile-based platforms and applications. Sound knowledge of machine learning and experience with any programming language is all you need to get started with this book.
Categories: Computers

Mastering Deep Learning Fundamentals with Python

Mastering Deep Learning Fundamentals with Python

★★Buy the Paperback Version of this Book and get the Kindle Book version for FREE ★★ Step into the fascinating world of data science.

Author: Richard Wilson

Publisher: Independently Published

ISBN: 1080537775

Category:

Page: 220

View: 643

★★Buy the Paperback Version of this Book and get the Kindle Book version for FREE ★★ Step into the fascinating world of data science.. You to participate in the revolution that brings artificial intelligence back to the heart of our society, thanks to data scientists. Data science consists in translating problems of any other nature into quantitative modeling problems, solved by processing algorithms. This book, designed for anyone wishing to learn Deep Learning. This book presents the main techniques: deep neural networks, able to model all kinds of data, convolution networks, able to classify images, segment them and discover the objects or people who are there, recurring networks, it contains sample code so that the reader can easily test and run the programs. On the program: Deep learning Neural Networks and Deep Learning Deep Learning Parameters and Hyper-parameters Deep Neural Networks Layers Deep Learning Activation Functions Convolutional Neural Network Python Data Structures Best practices in Python and Zen of Python Installing Python Python These are some of the topics covered in this book: fundamentals of deep learning fundamentals of probability fundamentals of statistics fundamentals of linear algebra introduction to machine learning and deep learning fundamentals of machine learning fundamentals of neural networks and deep learning deep learning parameters and hyper-parameters deep neural networks layers deep learning activation functions convolutional neural network Deep learning in practice (in jupyter notebooks) python data structures best practices in python and zen of python installing python The following are the objectives of this book: To help you understand deep learning in detail To help you know how to get started with deep learning in Python by setting up the coding environment. To help you transition from a deep learning Beginner to a Professional. To help you learn how to develop a complete and functional artificial neural network model in Python on your own. And more Get this book now to learn more about -- Deep learning in Python by setting up the coding environment.!
Categories:

Deep Learning

Deep Learning

Second Edition.With the Convolutional Neural Network (CNN) breakthrough in 2012, the deep learning is widely appliedto our daily life, automotive, retail, healthcare and finance.

Author: Albert Liu Oscar Law

Publisher:

ISBN: 9798623079701

Category:

Page: 252

View: 907

Second Edition.With the Convolutional Neural Network (CNN) breakthrough in 2012, the deep learning is widely appliedto our daily life, automotive, retail, healthcare and finance. In 2016, Alpha Go with ReinforcementLearning (RL) further proves new Artificial Intelligent (AI) revolution gradually changes our society, likepersonal computer (1977), internet (1994) and smartphone (2007) before. However, most of effortfocuses on software development and seldom addresses the hardware challenges: - Big input data- Deep neural network- Massive parallel processing- Reconfigurable network- Memory bottleneck- Intensive computation- Network pruning- Data sparsityThis book reviews various hardware designs range from CPU, GPU to NPU and list out special features toresolve above problems. New hardware can be evolved from those designs for performance and powerimprovement- Parallel architecture- Convolution optimization- In-memory computation- Near-memory architecture- Network optimizationOrganization of the Book1. Chapter 1 introduces neural network and discuss neural network development history2. Chapter 2 reviews Convolutional Neural Network model and describes each layer function and itsexample3. Chapter 3 list out several parallel architectures, Intel CPU, Nvidia GPU, Google TPU and MicrosoftNPU4. Chapter 4 highlights how to optimize convolution with UCLA DCNN accelerator and MIT EyerissDNN accelerator as example5. Chapter 5 illustrates GT Neurocube architecture and Stanford Tetris DNN process with in-memorycomputation using Hybrid Memory Cube (HMC)6. Chapter 6 proposes near-memory architecture with ICT DaDianNao supercomputer and UofTCnvlutin DNN accelerator7. Chapter 7 chooses energy efficient inference engine for network pruning3We continue to study new approaches to enhance deep learning hardware designs and several topics willbe incorporated into future revision- Distributive graph theory- High speed arithmetic- 3D neural processing
Categories:

Solving Quality and Maintenance Problems with AI

Solving Quality and Maintenance Problems with AI

Despite all the hype and money surrounding artificial intelligence ($1.2 trillion in 2017 alone), many companies aren't certain this "technology revolution" can help them solve current business needs.

Author: Alice LaPlante

Publisher:

ISBN: 1491999551

Category: Artificial intelligence

Page:

View: 867

Categories: Artificial intelligence

Deep Learning with Python A Fundamentals Guide to Understanding Machine Learning and Artificial Intelligence with Scikit Learn Tensorflow and

Deep Learning with Python  A Fundamentals Guide to Understanding Machine Learning and Artificial Intelligence with Scikit Learn  Tensorflow  and

And if you are at a more advanced level, the information you find won't be thorough enough. In this book, you will find the perfect balance between the information being very thorough and being able to understand it.

Author: Sebastian Dark

Publisher: Independently Published

ISBN: 1730725902

Category: Computers

Page: 158

View: 621

Curious to discover the revolutionary technology that is shaping our future and changing the world? Deep learning is a part of the field of computer science and a subset of machine learning that involves computer systems being able to "learn" unsupervised with data that is unlabeled or unstructured. In 2017, AlphaGo, which is AI developed by Google DeepMind and started off by only knowing the rules of the game, was eventually able to train itself and beat Ke Jie, the world No.1 ranked player at the time. Although this may not seem that impressive at first, it is important to understand that Go is a very complex game that many programmers were not able to trump with AI in the past. Although Go is an interesting example, the possibilities of using machine learning are limitless. From retail to medicine to finance, machine learning has the ability to change each industry it comes into contact with. In fact, this revolution has already begun and will only continue to get bigger. According to statista.com, the artificial intelligence industry is set to grow exponentially in the next few years from $7 Billion in 2018 to $90 Billion in 2025! This isn't something you can afford to miss. Without a doubt it is the future. However, it is as complex as it is revolutionary. If you do not have a background or any experience in the field, it is easy to get bogged down by all the complicated concepts and term. And if you are at a more advanced level, the information you find won't be thorough enough. In this book, you will find the perfect balance between the information being very thorough and being able to understand it. Although tailored for beginners, it won't contain simple and easily accessible information. You will dive deep into the field but will be carefully led through it in a way that will make everything easy to understand even if you do not have a technical background in computer programming. In this Guide, you will discover... What Machine Learning and Deep Learning Is And How You Can Use It To Change The World How The Field Can Be Broken Down And Learned In A Manageable Way Various Applications and Potential of Deep Learning That You Can Utilize - That You May Never Have Even Imagined Supervised And Unsupervised Learning - And Breaking It Down Step By Step How You Can Create And Train Deep Learning Models Where and How To Install the Best Programs So You Can Get Started Today Sample Codes And Datasets To Practice Along With And much more! If you are finally prepared to begin grasping this revolutionary technology at a high level despite what your technical background may be, Click "Add to Cart" Now! **Get the Kindle eBook version for FREE when you buy the Paperback version of this book!**
Categories: Computers