Machine Learning in Computer Vision

Machine Learning in Computer Vision

The goal of this book is to address the use of several important machine learning techniques into computer vision applications.

Author: Nicu Sebe

Publisher: Springer Science & Business Media

ISBN: 9781402032752

Category: Computers

Page: 242

View: 337

The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Categories: Computers

Machine Learning for Computer Vision

Machine Learning for Computer Vision

A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school.

Author: Roberto Cipolla

Publisher: Springer

ISBN: 9783642286612

Category: Computers

Page: 250

View: 169

Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school. The chapters provide an in-depth overview of challenging areas with key references to the existing literature.
Categories: Computers

Deep Learning in Computer Vision

Deep Learning in Computer Vision

This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision ...

Author: Mahmoud Hassaballah

Publisher: CRC Press

ISBN: 9781351003810

Category: Computers

Page: 322

View: 976

Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.
Categories: Computers

Deep Learning for Computer Vision with SAS

Deep Learning for Computer Vision with SAS

Containing a mix of theory and application, this book will also briefly cover methods for customizing deep learning models to solve novel business problems or answer research questions.

Author: Robert Blanchard

Publisher: SAS Institute

ISBN: 9781642959178

Category: Computers

Page: 150

View: 417

Discover deep learning and computer vision with SAS! Deep Learning for Computer Vision with SAS®: An Introduction introduces the pivotal components of deep learning. Readers will gain an in-depth understanding of how to build deep feedforward and convolutional neural networks, as well as variants of denoising autoencoders. Transfer learning is covered to help readers learn about this emerging field. Containing a mix of theory and application, this book will also briefly cover methods for customizing deep learning models to solve novel business problems or answer research questions. SAS programs and data are included to reinforce key concepts and allow readers to follow along with included demonstrations. Readers will learn how to: Define and understand deep learning Build models using deep learning techniques and SAS Viya Apply models to score (inference) new data Modify data for better analysis results Search the hyperparameter space of a deep learning model Leverage transfer learning using supervised and unsupervised methods
Categories: Computers

Deep Learning for Computer Vision

Deep Learning for Computer Vision

In this book, you will learn different techniques in deep learning to accomplish tasks related to object classification, object detection, image segmentation, captioning, .

Author: Rajalingappaa Shanmugamani

Publisher: Packt Publishing Ltd

ISBN: 9781788293358

Category: Computers

Page: 310

View: 967

Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.
Categories: Computers

Challenges and Applications for Implementing Machine Learning in Computer Vision

Challenges and Applications for Implementing Machine Learning in Computer Vision

Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual ...

Author: Kashyap, Ramgopal

Publisher: IGI Global

ISBN: 9781799801849

Category: Computers

Page: 293

View: 814

Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.
Categories: Computers

Deep Learning for Computer Vision

Deep Learning for Computer Vision

Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.

Author: Jason Brownlee

Publisher: Machine Learning Mastery

ISBN:

Category: Computers

Page: 563

View: 477

Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.
Categories: Computers

Fundamentals of Deep Learning and Computer Vision

Fundamentals of Deep Learning and Computer Vision

This book assumes a basic Python understanding with hands-on experience. A basic senior secondary level understanding of Mathematics will help the reader to make the best out of this book. Table of Contents 1. Introduction to TensorFlow 2.

Author: Nikhil Singh

Publisher: BPB Publications

ISBN: 9789388511858

Category: Computers

Page: 181

View: 743

Master Computer Vision concepts using Deep Learning with easy-to-follow steps DESCRIPTION This book starts with setting up a Python virtual environment with the deep learning framework TensorFlow and then introduces the fundamental concepts of TensorFlow. Before moving on to Computer Vision, you will learn about neural networks and related aspects such as loss functions, gradient descent optimization, activation functions and how backpropagation works for training multi-layer perceptrons. To understand how the Convolutional Neural Network (CNN) is used for computer vision problems, you need to learn about the basic convolution operation. You will learn how CNN is different from a multi-layer perceptron along with a thorough discussion on the different building blocks of the CNN architecture such as kernel size, stride, padding, and pooling and finally learn how to build a small CNN model. Next, you will learn about different popular CNN architectures such as AlexNet, VGGNet, Inception, and ResNets along with different object detection algorithms such as RCNN, SSD, and YOLO. The book concludes with a chapter on sequential models where you will learn about RNN, GRU, and LSTMs and their architectures and understand their applications in machine translation, image/video captioning and video classification. KEY FEATURES Setting up the Python and TensorFlow environment Learn core Tensorflow concepts with the latest TF version 2.0 Learn Deep Learning for computer vision applications Understand different computer vision concepts and use-cases Understand different state-of-the-art CNN architectures Build deep neural networks with transfer Learning using features from pre-trained CNN models Apply computer vision concepts with easy-to-follow code in Jupyter Notebook WHAT WILL YOU LEARN This book will help the readers to understand and apply the latest Deep Learning technologies to different interesting computer vision applications without any prior domain knowledge of image processing. Thus, helping the users to acquire new skills specific to Computer Vision and Deep Learning and build solutions to real-life problems such as Image Classification and Object Detection. This book will serve as a basic guide for all the beginners to master Deep Learning and Computer Vision with lucid and intuitive explanations using basic mathematical concepts. It also explores these concepts with popular the deep learning framework TensorFlow. WHO THIS BOOK IS FOR This book is for all the Data Science enthusiasts and practitioners who intend to learn and master Computer Vision concepts and their applications using Deep Learning. This book assumes a basic Python understanding with hands-on experience. A basic senior secondary level understanding of Mathematics will help the reader to make the best out of this book. Table of Contents 1. Introduction to TensorFlow 2. Introduction to Neural Networks 3. Convolutional Neural Network 4. CNN Architectures 5. Sequential Models
Categories: Computers

Deep Learning for Computer Vision with Python

Deep Learning for Computer Vision with Python

"Starter Bundle: A great fit for those taking their first steps towards deep learning for image classification mastery.

Author: Adrian Rosebrock

Publisher:

ISBN: OCLC:1032261119

Category: Machine learning

Page: 330

View: 766

"Starter Bundle: A great fit for those taking their first steps towards deep learning for image classification mastery. You'll learn the basics of (1) machine learning, (2) neural networks, (3) Convolutional Neural Networks, and (4) how to work with your own custom datasets." -- from author/publisher's website.
Categories: Machine learning

Deep Learning for Vision Systems

Deep Learning for Vision Systems

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Author: Mohamed Elgendy

Publisher: Manning Publications

ISBN: 9781617296192

Category: Computers

Page: 410

View: 677

Computer vision is central to many leading-edge innovations, including self-driving cars, drones, augmented reality, facial recognition, and much, much more. Amazing new computer vision applications are developed every day, thanks to rapid advances in AI and deep learning (DL). Deep Learning for Vision Systems teaches you the concepts and tools for building intelligent, scalable computer vision systems that can identify and react to objects in images, videos, and real life. With author Mohamed Elgendy's expert instruction and illustration of real-world projects, you'll finally grok state-of-the-art deep learning techniques, so you can build, contribute to, and lead in the exciting realm of computer vision! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Categories: Computers

Mastering Computer Vision with TensorFlow 2 x

Mastering Computer Vision with TensorFlow 2 x

This book focuses on using TensorFlow to help you learn advanced computer vision tasks such as image acquisition, processing, and analysis.

Author: Krishnendu Kar

Publisher: Packt Publishing Ltd

ISBN: 9781838826932

Category: Computers

Page: 430

View: 634

Apply neural network architectures to build state-of-the-art computer vision applications using the Python programming language Key Features Gain a fundamental understanding of advanced computer vision and neural network models in use today Cover tasks such as low-level vision, image classification, and object detection Develop deep learning models on cloud platforms and optimize them using TensorFlow Lite and the OpenVINO toolkit Book Description Computer vision allows machines to gain human-level understanding to visualize, process, and analyze images and videos. This book focuses on using TensorFlow to help you learn advanced computer vision tasks such as image acquisition, processing, and analysis. You'll start with the key principles of computer vision and deep learning to build a solid foundation, before covering neural network architectures and understanding how they work rather than using them as a black box. Next, you'll explore architectures such as VGG, ResNet, Inception, R-CNN, SSD, YOLO, and MobileNet. As you advance, you'll learn to use visual search methods using transfer learning. You'll also cover advanced computer vision concepts such as semantic segmentation, image inpainting with GAN's, object tracking, video segmentation, and action recognition. Later, the book focuses on how machine learning and deep learning concepts can be used to perform tasks such as edge detection and face recognition. You'll then discover how to develop powerful neural network models on your PC and on various cloud platforms. Finally, you'll learn to perform model optimization methods to deploy models on edge devices for real-time inference. By the end of this book, you'll have a solid understanding of computer vision and be able to confidently develop models to automate tasks. What you will learn Explore methods of feature extraction and image retrieval and visualize different layers of the neural network model Use TensorFlow for various visual search methods for real-world scenarios Build neural networks or adjust parameters to optimize the performance of models Understand TensorFlow DeepLab to perform semantic segmentation on images and DCGAN for image inpainting Evaluate your model and optimize and integrate it into your application to operate at scale Get up to speed with techniques for performing manual and automated image annotation Who this book is for This book is for computer vision professionals, image processing professionals, machine learning engineers and AI developers who have some knowledge of machine learning and deep learning and want to build expert-level computer vision applications. In addition to familiarity with TensorFlow, Python knowledge will be required to get started with this book.
Categories: Computers

Autonomous Cars

Autonomous Cars

This course will guide you through the key design and development aspects of self-driving vehicles. You'll be exploring OpenCV, deep learning, and artificial neural networks and their role in the development of autonomous cars.

Author: Frank Kane

Publisher:

ISBN: OCLC:1137373798

Category:

Page:

View: 745

Learn OpenCV, Keras, object and lane detection, and traffic sign classification for self-driving cars. About This Video Learn complex topics such as artificial intelligence (AI) and machine learning through a systematic and helpful teaching style Build deep neural networks with TensorFlow and Keras Classify data with machine learning techniques such as regression, decision trees, Naive Bayes, and SVM In Detail The automotive industry is experiencing a paradigm shift from conventional, human-driven vehicles to self-driving, artificial intelligence-powered vehicles. As the world advances towards a driverless future, the need for experienced engineers and researchers in this emerging new field has never been more crucial. This course will guide you through the key design and development aspects of self-driving vehicles. You'll be exploring OpenCV, deep learning, and artificial neural networks and their role in the development of autonomous cars. The book will even guide you through classifying traffic signs with convolutional neural networks (CNNs). In addition to this, you'll use template matching to identify other vehicles in images, along with understanding how to apply HOG for extracting image features. As you progress, you'll gain insights into feature detectors, including SIFT, SURF, FAST, and ORB. Next, you'll get up to speed with building neural networks using Keras and TensorFlow, and later focus on linear regression and logistic regression. Toward the concluding part, you'll explore machine learning techniques such as decision trees and Naive Bayes for classifying data, in addition to understanding the Support Vector Machine (SVM) method. By the end of this course, you'll be well-versed with key concepts related to the design and development of self-driving vehicles. Downloading the example code for this course: You can download the example code files for this course on GitHub at the following link: https://github.com/PacktPublishing/Autonomous-Cars-Deep-Learning-and-Computer-Vision-in-Python . If you require support please email: [email protected]
Categories:

Applied Deep Learning and Computer Vision for Self Driving Cars

Applied Deep Learning and Computer Vision for Self Driving Cars

This book teaches you the different techniques and methodologies associated while implementing deep learning solutions in self-driving cars.

Author: Sumit Ranjan

Publisher: Packt Publishing Ltd

ISBN: 9781838647025

Category: Computers

Page: 332

View: 328

This book teaches you the different techniques and methodologies associated while implementing deep learning solutions in self-driving cars. You will use real-world examples to implement various neural network architectures to develop your own autonomous and automated vehicle using the Python environment.
Categories: Computers

Learn Computer Vision Using OpenCV

Learn Computer Vision Using OpenCV

This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples.

Author: Sunila Gollapudi

Publisher: Apress

ISBN: 9781484242612

Category: Computers

Page: 151

View: 324

Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples. The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you’ll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision. After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work. What You Will Learn Understand what computer vision is, and its overall application in intelligent automation systems Discover the deep learning techniques required to build computer vision applications Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis Who This Book Is ForThose who have a basic understanding of machine learning and Python and are looking to learn computer vision and its applications.
Categories: Computers

Hands On Java Deep Learning for Computer Vision

Hands On Java Deep Learning for Computer Vision

The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques.

Author: Klevis Ramo

Publisher: Packt Publishing Ltd

ISBN: 9781838552138

Category: Computers

Page: 260

View: 783

Leverage the power of Java and deep learning to build production-grade Computer Vision applications Key Features Build real-world Computer Vision applications using the power of neural networks Implement image classification, object detection, and face recognition Know best practices on effectively building and deploying deep learning models in Java Book Description Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The book is designed to familiarize you with neural networks, enabling you to train them efficiently, customize existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time. You will build real-world Computer Vision applications, ranging from a simple Java handwritten digit recognition model to real-time Java autonomous car driving systems and face recognition models. By the end of this book, you will have mastered the best practices and modern techniques needed to build advanced Computer Vision Java applications and achieve production-grade accuracy. What you will learn Discover neural networks and their applications in Computer Vision Explore the popular Java frameworks and libraries for deep learning Build deep neural networks in Java Implement an end-to-end image classification application in Java Perform real-time video object detection using deep learning Enhance performance and deploy applications for production Who this book is for This book is for data scientists, machine learning developers and deep learning practitioners with Java knowledge who want to implement machine learning and deep neural networks in the computer vision domain. You will need to have a basic knowledge of Java programming.
Categories: Computers

Domain Adaptation in Computer Vision with Deep Learning

Domain Adaptation in Computer Vision with Deep Learning

The second part of this book highlights feature alignment based approaches to domain adaptation. The third part of this book outlines image alignment procedures for domain adaptation.

Author: Hemanth Venkateswara

Publisher: Springer Nature

ISBN: 9783030455293

Category:

Page:

View: 453

Categories:

Practical Computer Vision Applications Using Deep Learning with CNNs

Practical Computer Vision Applications Using Deep Learning with CNNs

You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset.

Author: Ahmed Fawzy Gad

Publisher: Apress

ISBN: 9781484241677

Category: Computers

Page: 405

View: 324

Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web server using Flask, making it accessible over the Internet. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads. This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production. What You Will Learn Understand how ANNs and CNNs work Create computer vision applications and CNNs from scratch using Python Follow a deep learning project from conception to production using TensorFlow Use NumPy with Kivy to build cross-platform data science applications Who This Book Is ForData scientists, machine learning and deep learning engineers, software developers.
Categories: Computers

Java Machine Learning for Computer Vision

Java Machine Learning for Computer Vision

"The goal of this course is to walk you through the process of efficiently training Deep Neural Networks for Computer Vision using the most modern techniques.

Author: Klevis Ramo

Publisher:

ISBN: OCLC:1137153534

Category:

Page:

View: 157

"The goal of this course is to walk you through the process of efficiently training Deep Neural Networks for Computer Vision using the most modern techniques. The course is designed to get you familiar with Deep Neural Networks in order to be able to train them efficiently, customize existing state-of-the-art architectures, build real world Java applications, and get great results in a short time. You will build real-world Computer Vision applications, ranging from simple Java handwritten digit recognition to real-time Java autonomous car driving systems and face recognition. By the end of the course you will have mastered the best practices and most modern techniques to build advanced Computer Vision Java applications and achieve production-grade accuracy."--Resource description page.
Categories:

Deep Learning on Windows

Deep Learning on Windows

What You Will Learn Understand the basics of Deep Learning and its history Get Deep Learning tools working on Microsoft Windows Understand the internal-workings of Deep Learning models by using model visualization techniques, such as the ...

Author: Thimira Amaratunga

Publisher: Apress

ISBN: 1484264304

Category: Computers

Page: 235

View: 799

Build deep learning and computer vision systems using Python, TensorFlow, Keras, OpenCV, and more, right within the familiar environment of Microsoft Windows. The book starts with an introduction to tools for deep learning and computer vision tasks followed by instructions to install, configure, and troubleshoot them. Here, you will learn how Python can help you build deep learning models on Windows. Moving forward, you will build a deep learning model and understand the internal workings of a convolutional neural network on Windows. Further, you will go through different ways to visualize the internal workings of deep learning models along with an understanding of transfer learning where you will learn how to build a model architecture and use data augmentations. Next, you will manage and train deep learning models on Windows before deploying your application as a web application. You’ll also do some basic image processing and work with computer vision options that will help you build various applications with deep learning. Finally, you will use generative adversarial networks along with reinforcement learning. After reading Deep Learning on Windows, you will be able to design deep learning models and web applications on the Windows operating system. What You Will Learn Get deep learning tools working on Microsoft Windows Understand model visualization techniques, such as the built-in plot_model function of Keras and third-party visualization tools Build a robust training script Convert your deep learning model into a web application Generate handwritten digits with DCGAN (deep convolutional generative adversarial network) Understand the basics of reinforcement learning Who This Book Is For AI developers and enthusiasts wanting to work on the Windows platform.
Categories: Computers